Palladium(11)-catalysed Formation of Indoles from 2,2-Diphenyl-2H-azirines

By KAZUAKI ISOMURA, KUNIHARU UTO, and HIROSHI TANIGUCHI*

(Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Hakozaki, Fukuoka 812, Japan)

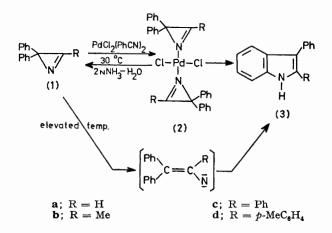
Summary Treatment of four 2,2-diphenyl-2H-azirines with a catalytic amount of dichlorobis(benzonitrile)palladium(II) at room temperature gave the same indoles as were obtained by heating the 2*H*-azirines, *via* dichlorobis-(2*H*-azirine)palladium(II) complexes.

THERE has been much interest in the transition metalcatalysed ring opening of strained ring systems.¹ Recently, Alper *et al.*² and we³ reported reactions of 3-aryl-2*H*-azirines in the presence of transition-metal compounds to give several types of dimerisation products. In connection with those studies, we expected that transition metal (*e.g.* Pd) compounds could catalyse the intramolecular rearrangement of 2-aryl-2*H*-azirines to give indole derivatives, since the azirines were known to undergo thermal rearrangement.⁴

We have found that dichlorobis(benzonitrile)palladium-(II) acts as an excellent catalyst for the conversion of 2Hazirines into indoles. Thus, reactions of 0.3 mmol of the 2,2-diphenyl-2*H*-azirines (1a—c) with 0.015 mmol of Pd^{II} in 100 ml of benzene at 30 °C followed by washing with 2Naqueous ammonia and the usual work up gave the indoles (3a—c) quantitatively. Thermal reactions of these azirines gave the same indoles. The results (Table 1) show a large rate-enhancing effect of Pd^{II} in indole formation.

TABLE 1. Half lives for the Pd^{II}-catalysed and non-catalysed formation of indoles (3) from 2,2-diphenyl-2H-azirines (1).

	Catalysed ^a	Non-catalysed			
Azirine	$t_{1/2}/\min$	Solv.	Temp./°C	$t_{1/2}/\min$	`
(1a)	<3	$C_{s}H_{s}$	80	18	
(1b)	360	Decalin	170	53	
(1c)	4200	Decalin	170	720	
			0 TT		


 $^{\rm a}$ All catalysed reactions at 30 °C in $\rm C_6H_6,$ with 0.05 mol. equiv. of PdII and concentration of azirine adjusted to 3 mm.

Although the mechanism of the Pd^{II}-catalysed indole formation is not clear at this stage, we assume intervention of Pd^{II} complexes. In fact, we have obtained such complexes, (2c) and (2d), as yellow precipitates, in the reactions of (1c) and (1d) with 0.5 mol. equiv. of Pd^{II} in benzene for 2 h at ambient temperature (Table 2). The recovery of the 2*H*-azirines upon treatment of (2c) and (2d) with 2*N*aqueous ammonia and elemental analysis of (2d) showed that compounds (2) are 2:1 complexes of the 2*H*-azirines and PdCl₂.[†] The quantitative formation of indoles upon stirring a suspension of compounds (2) in benzene at room temperature showed the above assumption to be correct.

 TABLE 2. Yields and physical properties of dichlorobis(2H-azirine)palladium(II) complexes (2).

			$v_{C=N}/cm^{-1}$		
Complex	Yield (%)	M.p./°C	(2)	(1)	
(2b)	21	101 - 102	1796	1765	
(2c)	83	108 - 110	1766	1737	
(2d)	89	134135	1772	1735	

In the reactions of (1a) and (1b) with 0.5 mol. equiv. of Pd^{II}, the solutions immediately turned red-brown and the indoles (3a) and (3b) were obtained after 2 h in 95 and 97% yields, respectively. However, the reaction of (1b) at -40 °C in toluene for 2 h gave (2b), but in low yield. Under the same conditions, (1a) failed to give (2a).

The reactivity sequence in the Pd^{II}-catalysed formation of indoles shows the same trend as that in the non-catalysed thermal reaction and depends on the substituent at the 3-position of the azirine ring (H>>Me>Ph). This indicates that ring opening by C-N bond fission is accelerated by Pd^{II} complex formation, since the thermal reaction has been shown to proceed by C-N bond fission.⁴

(Received, 20th June 1977; Com. 601.)

 \dagger According to a personal communication from Professor A. Hassner, a *trans* square-planar structure, in which the nitrogen is co-ordinated to Pd^{II}, has been determined for dichlorobis(3-*p*-tolyl-2*H*-azirine)palladium(II) by X-ray crystallography.

¹ K. C. Bishop, III, Chem. Rev., 1976, 76, 461.

² H. Alper and S. Wollowitz, *J. Amer. Chem. Soc.*, 1975, 97, 3541; H. Alper and J. E. Prickett, *J.C.S. Chem. Comm.*, 1976, 191, 483, 983.

³ K. Hayashi, K. Isomura, and H. Taniguchi, Chemistry Letters, 1975, 1011.

⁴ K. Isomura, S. Kobayashi, and H. Taniguchi, *Tetrahedron Letters*, 1968, 3499; K. Isomura, M. Okada, and H. Taniguchi, *ibid.*, 1969, 4073; K. Isomura, T. Tanaka, and H. Taniguchi, *Chemistry Letters*, 1977, 401.